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Summing tree graphs at threshold 
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The solution of the classical field equation generates the sum of all tree graphs. We show that the 
classical equation reduces to an easily solved ordinary differential equation for certain multiparticle 
threshold amplitudes and compute these amplitudes. 
PACS number(s): 11.1O.Ef; 11.1O.Jj 

The important and outstanding problem of high- 
energy baryon-number violation [I] motivates the inves- 
tigation of simpler processes which share some of its fea- 
tures. One feature of the high-energy baryon violation is 
the production of a very large number of particles. Even 
in a weakly coupled theory, many-particle amplitudes 
may become large because they involve a large number 
of graphs. Cornwall [2] and Goldberg [3] have exam- 
ined the lowest-order, tree-graph amplitudes for many- 
particle production. Recently, Voloshin [4] has consid- 
ered the tree graphs in the simple, unbroken X d4 theory 
for the amplitude where a highly off-mass-shell 4 field 
produces a large number n of on-mass-shell q5 particles. 
In particular, he considered the threshold limit in which 
all the produced particles are at rest and obtained an 
exact result for this amplitude by deriving and solving a 
recursion relation for the many-particle amplitudes. Us- 
ing this technique, Argyres, Kleiss, and Papadopoulos 

[5] extended Voloshin's result to  include the case of the 
spontaneously broken X d4 theory which contains cubic as 
well as quartic interactions. The purpose of this Rapid 
Communication is to  point out that these previous results 
are obtained very simply if one recalls that the generating 
function for the tree graphs is the solution to the classical 
field equation [6]. We shall also show how to generalize 
the results to  the case of the unbroken, multicomponent 
O(N) scalar theory. 

Our object is to compute the amplitudes for the field 
4 to create n particles out of the vacuum, (n1410), for the 
simple scalar theory described by the Lagrange function 

The source p is introduced so as to generate these ampli- 
tudes according to the usual reduction formula method 
PI, 

The tree-graph approximation is obtained by the replace- 
ment 

where dC1 is the solution to the classical field equation 
driven by the source p, 

subject to  the quantum time-ordered boundary condi- 
tions which give the prescription m2 -+ m2 - i~ in the 
propagator. This defines the classical field dcl as a func- 
tional of the source, q5,1 = +,l[p]. We shall consider only 
the threshold limit p, = 0. In this limit, the space- 
time-dependent source p(x) and the resulting field (x) 
may be replaced by spatially uniform but time-dependent 
functions p(t) and qicl(t). Thus the field equation (4) 
reduces to an ordinary differential equation. The mass- 
shell amplitude is obtained by setting 

and then taking the limit w -+ m. To see how this goes, 

we first examine the solution to the classical field equa- 
tion (4) when there is no interaction (A -+ 0), 

where 

We now insert the expansion of dCl in powers of the cou- 
pling X 

dcl = z + X 4::' + X2 4:;) + . . (8) 

into the field equation (4) and identify the coefficients of 

the various powers of the coupling A. This shows that 4::) 
is proportional to X z3/3!. Similarly, proceeding to higher 
orders in the expansion shows that q5cI is an ordinary 
function of z(t) ,  dCl(t) = d,l(z(t)). Hence, in view of 
Eqs. (6) and (7)' the functional derivatives which occur 
in the reduction formula (2) become ordinary derivatives: 
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6 the mass parameter in the Lagrange function for the 
/ [ d 4 z a )  eiwia (m2 - u2) -dcl(t; [p] )  

b ~ ( x a )  shifted field is altered to ml = d m  and so we must 
now expand about 

a 
= --dc~(z(t>> . (9) 

820 ~ ( t )  = zo eZmlt . (16) 

We see that the threshold n-particle amplitude in the tree Again since an energy integral to the equation of motion 
approximation may be expressed as exists, the classical field equation (1  1)  may be solved. 

n Rather than writing down the intermediate steps, it again 

( ~ I O ( ~ ) I O ) : C . ~ ~ , ~  = (& ) mcl 1 . suffices to display the solution since its verification is sim- 
~ = o  (lo) ple: 

To go on mass shell, w -, m, we take po -+ 0 in such a 
@ C l ( t )  = do 1  + z( t ) /24o 

way as to keep z ( t )  finite. In this limit, the classical field 1 - z ( t ) /2do  ' 
(17) 

obeys the homogeneous, ordinary differential equation 
- .* Inserting this solution into Eq. (10)  gives 

1 I-$ + m2J d c ~ ( t )  + 7J ~ : l ( t )  = 0 , (11) n- 1 

(nl d ( 0 )  10) Eshou = n! (&) 
with the condition that dCl( t )  approaches z ( t )  as X van- 
ishes. This is the result of Argyres et al. [5].  

A. Unbroken symmetry 

The ordinary differential equation (11)  has a constant 
of the motion, the energy integral 

Since dC1 contains only an ascending power series in the 
oscillating function t ( t ) ,  the left-hand side of this equa- 
tion contains only oscillating terms. Hence the constant 
E must vanish, and the final integration to obtain 
gives a simple elementary function. Rather than indicat- 
ing the intermediate steps, we shall just write down the 
result since it is easier to verify directly that it is the 
proper solution of the original differential equation (11): 

This is the function for the case of unbroken symmetry 
with m2 > 0. Placing the solution (13) in Eq. (10) shows 
that the amplitude vanishes unless n = 2k + 1 is odd, 
where 

This is the result of Voloshin [4].  

B. Broken symmetry 

C. O ( N )  Model 

The results of the unbroken theory are easily extended 
to the O ( N )  theory in which the single q5 field is replaced 
by a vector field da with N components, and the inter- 
action now involves the O ( N )  invariant (4ar$a)2. It is 
straightforward to check that the previous solution (13) 
generalizes to 

In the previous simple one-component theory, the 
squared matrix element, divided by the Bose symmetriza, 
tion factor n! and multiplied by the appropriate phase- 
space factor, gives the threshold limit of the absorptive 
part of the +-field propagator. The analogous construc- 
tion for the O ( N )  theory involves some combinatorial 
analysis which, as we now show, is simplified by using 
functional methods. For the O ( N )  theory, the absorptive 
part of the propagator in the tree approximation entails 
the schematic structure 

~ ~ ~ ( 2 k  + 1 )  = C(ol4 '12k  + 1)(2k  + l l ~ b ~ ) I t r e e  threshold 

Here the sum is over all states with the total particle 
number n = 2k + 1 including implicit Bose symmetriza- 
tion factors. To perform this sum with the correct fac- 
tors, we note that the exponential operation applied to a 

The reflection symmetry 4 + -4 is broken when squared matrix element in our z representation, 

m2 -+ -m2 < 0. In this case the field equation (11) a a 00 1 
has the constant solution e x p ( - - ) = ~ ~ ( ~ ) ' ( ~ )  (21) 

dz*a aza  l=O L! az*a aza 
dCl + d o  = (15) 

(with no sum over a), produces a sum over all particle 
Expanding the field about this constant solution gives numbers 1 of particle type a in the resulting intermediate 
rise to three-field as well as four-field couplings, and the state with the correct Bose symmetrization factor of l !  in 
graphical structure becomes more complex. Moreover, the denominator. Hence the operation 
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8 a d  a k  is very large, and the tree approximation must break 
exp {= ' ' ' exp {w rn} = exp { ' &} down. Indeed, inserting the complete set of intermedi- 

ate energy eigenstates into the ground-state commutator 
( 2 2 )  matrix element 

applied to the monomial (O1[41 dq/dt] l o )  = ( 2 8 )  

yields the sum rule 

C 2 ~ , r ,  = 1 ,  

which is the order 2k + 1  term in the expansion of 4Ef &, n 

produces the sum ( 2 0 )  in the limit z * ~  = zb = 0. Since where we have chosen the energy scale to make the 
ground-state energy vanish. Since a sum of positive 

f ( x )  = f ( x + ~ ) ,  ( 2 3 )  terms appears here, and since the anharmonic coupling 
increases the energy of an intermediate state, we have 

we have the bound1 

x a a k  1  
rn < - 1 1  < --. 

M a b k  + 1  = ( -  4 8  m2 & (- d z  -) d z  zb(z  . I ) * .  2En 2 m n  ( 3 0 )  

Hence, even for weak coupling, the tree approximation 
( 2 4 )  must break down for highly excited states where 

The derivatives that appear here may be evaluated re- 
cursively by using ( 2 k  + 1 ) ( 2 k  + I ) !  N - ("";"IZk , ( 3 1 )  ( ) z a  z 1  = 4 (1 + / z a  z 1  ( 2 5 )  or, on using Stirling's approximation for the factorial, 

when 
Thus 

k  - (48  m 3 / X )  e , 
X 2k I'(k + 1  + N / 2 )  

( 3 2 )  

M a b ( 2 k +  1 )  = aab - 
( 4 8 m 2 )  4kk! 

where e is the base of the natural logarithm. This re- 
I'(' + N'2) ' striction just states that the tree approximation must 

( 2 6 )  break down for states which are so highly excited that 
the anharmonic interaction becomes comparable to the 
harmonic term, m2 (q2) - X (q4) since, in the harmonic 

D. Quantum mechanics approximation, ( q 2 )  - k / m  and (q4) N k 2 / m 2 .  

The validity of the tree approximation is illustrated by 
considering the quantum mechanical analogue of the field 
theory, the field theory in zero spatial dimensions, the 
anharmonic oscillator. In this case, the "threshold limit" 
gives the full amplitude. Dividing the previous result 
for the unbroken theory ( 1 4 )  by d ( 2 k  + 1 ) ! ( 2 m ) 2 k + 1  to 
produce the normalized quantum mechanical amplitude 
and then squaring to obtain the spectral weight gives 

Although the coupling X may be small, this amplitude be- 
comes large for a sufficiently highly excited state where 
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 he inequality (30) can obviously be sharpened by placing 
a factor of (1 - 2E1 r l )  on the right-hand side. In the weak 
coupling limit, this factor is of order (X/m3)2. This, however, 
does not alter the leading behavior of the large k restriction 
shown in Eq. (32). 
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